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i=2

Figure S1: Schematic representation of the amide group and all four ways of forming a hydrogen
bonded linear dimer from identical molecules. Hydrogen bonds are represented by dotted lines. In
Model 0, we assume that only unimers and linear dimers are present in the solution.

1 Models

1.1 Model 0
In model 0, we assume that the solution contains only monomers and linear dimers (see Figure S1),
and that chemical equilibrium with respect to hydrogen bonding association is described by a single
association constant K. Then, the total concentration of the solution and the concentration of
unimers are related to each other by the equation

c = c1 + 2c2, (1)

where the concentration of dimers is c2 = 4Kc21. The factor of 4 appears here because there are
four ways to form a dimer from two identical molecules (due to the presence of two hydrogens in
the NH2 group and two lone electron pairs on the oxygen).

The free energy of hydrogen bonding of a system of volume V with N molecules and M dimers
can be written as

FHB = Mε− kT ln
(
pMΞ

)
, (2)

where ε is the energy of a hydrogen bond, p = C/V (where C is a constant) is the probability
that two molecules will meet and orient with respect to each other to from a bond, and Ξ is the
combinatorial number of ways to form M dimers out of N molecules, such that

Ξ =
N !2M

(N −M)!

(N −M)!2M

(N − 2M)!

1

M !
=

N !4M

(N − 2M)!M !
, (3)

where the first factor is the number of ways of choosing M acceptor molecules, the second factor
is the number of ways of choosing M donor molecules, the factor 2M takes into account that
each molecule has two hydrogens (in the case when we assume that two bonds per oxygen are
possible then an additional factor of 2M appears), and the last factor takes into account the
indistinguishability of bonds.

Minimizing the free energy with respect to M yields

M

4 (N − 2M)
2 =

K

V
, (4)

where K = C exp (−ε/kT ), or, in terms of concentrations,

m

4 (c− 2m)
2 = K. (5)

As the concentration of unimers in the system is c1 = c− 2m = c− 8Kc21, we get m = c2 = 4Kc21
and c = c1 + 8Kc21 in agreement with Equation 1.

Let us now try to determine the association constant by fitting the dependence of the concen-
tration on the height of the 3530cm−1 peak.
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Figure S2: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 0m.
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Figure S3: Dependence of lnK on 1/T for model 0m.

1.1.1 Model 0m

First, we assume that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in unimers. In this case, c1 = Ax, where x is the height of the peak and A is some constant.
Substituting this in Equation 1 gives the fitting equation

c = Ax+ 8KA2x2. (6)

A fit of the dependence of peak intensity on concentration at T = 22◦C is shown in Figure S2.
The quality of the nonlinear fit can be quantified by the Akaike Information Criterion, on which
further details are given at the end of this document. The value of this quantity for the current fit
is AICc = −457.6.

According to the definition of the association constant in our model, K = C exp (−ε/kT ),
lnK should depend linearly on inverse temperature 1/T , and this dependence, together with a
linear weighted fit, is shown in Figure S3. This yields estimates for the model parameters of
lnC = −0.84 ± 3 ln[l/mol] and ε = −1.03 ± 1.8 kcal/mol. The poor quality of the fit in this case
is reflected in the low value of the coefficient of determination, r2 = 0.07.

1.1.2 Model 0g

It is now assumed that the 3530cm−1 peak corresponds to the out-of-phase vibrations of free NH2

groups. In this case, Ax = c1 + 4Kc21, and the fitting equation is

c =
1 + 16AKx−

√
1 + 16AKx

8K
. (7)
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Figure S4: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 0g.
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Figure S5: Dependence of lnK on 1/T for model 0g. The error bars are too large to be shown.

A fit of peak intensity versus concentration at T = 22◦C is shown in Figure S4. This fit is visibly
less successful than that for model 0m, and AICc takes the higher value of −298.

The dependence of lnK on 1/T is shown in Figure S5. The estimates of the model parameters
are lnC = −1.65± 0.5 ln[l/mol] and ε = −1.15± 0.3 kcal/mol. The quality of the fit is better than
in model 0m, and this is shown by the higher value of the coefficient of determination, r2 = 0.75.
However, we note that this apparent improvement may be offset by the very large error bars on
lnK, which probably result from the poor quality nonlinear fit in Figure S4.

The free energy density due to hydrogen bonding in model 0 in terms of the volume fraction
of hydrogen bonding molecules φ = cv and the dimensionless association constant K ′ = K/v has
the form

fHB =

(√
1 + 32K ′φ− 1

)2
64K ′

+ φ ln

√
1 + 32K ′φ− 1

16K ′φ
. (8)

1.2 Model 1
In model 1, we assume that we have one bond per oxygen, two bonds per NH2 group, one association
constant, and no cycles. This means that the aggregates are tree-shaped (see Figure S6).

The free energy of hydrogen bonding can be written as

F = Mε− kT ln
(
pMΞ

)
, (9)

where M is the number of hydrogen bonds, p is the probability that a donor and an acceptor form
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Figure S6: Schematic representation of possible aggregates with size up to i = 3 in model 1.

S6



a bond, and Ξ is the number of ways to form M bonds, given in this case by

Ξ =
N !2M

(N −M)!

2N !

(2N −M)!

1

M !
, (10)

where the first factor is the number of ways to choose an acceptor, the second is the number of
ways to choose a donor, and the final factor takes into account the fact that all bonds are identical.
Substituting Equation (10) into Equation (9) and using Stirling’s formula gives

F

kT
= M

( ε

kT
− ln p

)
+N ln

(N −M) (2N −M)
2

4N3
+M ln

Me

(N −M) (2N −M)
. (11)

After minimization with respect toM , we find, in terms of concentrationsm = M/V and c = N/V ,

m

2 (c−m) (2c−m)
= K. (12)

Let us suppose that the concentration of aggregates of size i can be expressed as

ci = αiK
i−1ci1, (13)

where the αi are unknown coefficients. Then, for the concentration of bonds m and total concen-
tration c we have

m =

∞∑
i=1

(i− 1) ci (14)

and

c =

∞∑
i=1

ici. (15)

In order to find αi, we substitute expressions 14 and 15 into Equation 12 and equate coefficients
in front of like powers of c1. Using this method, we can calculate the values of the coefficients,
which in this case are (starting from i = 1) 1, 4, 20, 112, 672, 4224, 27456,. . .. Using the On-Line
Encyclopedia of Integer Sequences1, we can assume that the general formula for a term of this
sequence most probably has the form (in the main paper a more elegant way to get this result is
described)

αi = 2i−1
(2i)!

(i+ 1)!i!
. (16)

The sequence βi = (2i)!/ (i+ 1)!i! is known as the Catalan numbers. It is known that these
numbers represent the number of different rooted binary trees with i + 1 leaves. In our case, we
have an additional factor of 2i−1, since each molecule apart from the root can be added in two
ways to form a bond with one of the free hydrogens because there are two bonding sites on the
oxygen. All aggregates allowed in this model with size up to i = 3 are shown in Figure S6. So we
can say that the physical meaning of αi is the number of ways to form an aggregate of size i out
of i molecules.

It is also interesting to note that, by looking at Figure S6, it can be seen that the aggregates
can be built recursively from each other, so a generating function G (z) can be written as

G (z) = 1 + 4zG (z) + 4z2G (z)
2
, (17)

where z = Kc1 is the multiplicative factor that is introduced when the size of the aggregate is
increased by one. Solution of this equation gives

G (z) =
1− 4z −

√
1− 8z

8z2
, (18)

and this generating function can be expanded with respect to z to give the values of αi.
With this expression for αi in hand, the total concentration of the solution can be calculated

as

c =
1− 4Kc1 −

√
1− 8Kc1

8K2c1
√

1− 8Kc1
. (19)
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Figure S7: Fit of the dependence of the total concentration on the height of 3530cm−1 peak at
T = 22◦C with model 1m.
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Figure S8: Dependence of lnK on 1/T for model 1m.

1.2.1 Model 1m

Let us assume first that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in unimers. In this case, c1 = Ax, where x is the height of the peak and A is some constant.
Substituting this in Equation 19 gives the fitting equation:

c =
1− 4KAx−

√
1− 8KAx

8K2Ax
√

1− 8KAx
. (20)

The results of this fit are shown in Figures S7 and S8. The value of AICc for the fit in Figure S7 is
−503.8. The dependence of lnK on 1/T is shown in Figure S8, and this fit gives estimates of the
model parameters of lnC = −2.14± 0.6 ln[l/mol] and ε = −0.79± 0.2 kcal/mol, with a coefficient
of determination of r2 = 0.56.

1.2.2 Model 1g

In model 1g, it is assumed that the 3530cm−1 peak corresponds to the out-of-phase vibrations of
NH2 free groups both in free molecules and in aggregates. Therefore, in order to find a fitting
equation, we need to calculate the concentration of free groups. However, it turns out that it is
impossible to do this in the framework of model 1 because the number of free groups depends on
the structure of the aggregate. However, model 5 (to be introduced later) does include the relevant
information about the structure of the aggregate, and reduces to model 1 when its two association
constants are set equal to each other. Therefore, the calculation of the fitting expression is carried
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Figure S9: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 1g.
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Figure S10: Dependence of lnK on 1/T for model 1g.

out in model 5, and K1 and K2 are both set equal to K at the end. This gives

c =
1− 4AKx+ 16A2K2x2 − (1− 4AKx)

√
1 + 16A2K2x2

8AK2x
. (21)

The results of the fit are shown in Figures S9 and S10. The quality of fit in Figure S9 can be
characterized by the parameter AICc = −388.9, and the fit shown in Figure S10 estimates the
model parameters to be lnC = −1.77± 0.4 ln[l/mol] and ε = −1.55± 0.3 kcal/mol, with r2 = 0.9.

1.2.3 Model 1s

Here we assume that the 3530cm−1 peak corresponds to the out-of-phase vibrations of NH2 free
groups in free molecules and dimers. In this case, the relation between c1 and x takes the form
Ax = c1 + 4Kc21.

The fitting results are shown in Figures S11 and S12. The value of AICc for the fit in Figure S11
is −503.9, and the estimates for the model parameters corresponding to Figure S12 are lnC =
−1.75± 0.5 ln[l/mol] and ε = −0.78± 0.3 kcal/mol, with r2 = 0.66.

The free energy density of hydrogen bonding in model 1 in terms of the volume fraction of
hydrogen bonding molecules φ = cv and dimensionless association constant K ′ = K/v has the
form

fHB = m+ φ ln
(φ−m) (2φ−m)

2

4φ3
, (22)

where m is a solution of the equation m/[2 (φ−m) (2φ−m)] = K ′.
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Figure S11: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 1s.
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Figure S12: Dependence of lnK on 1/T for model 1s.
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Figure S13: Schematic representation of possible aggregates with size up to i = 3 in model 2.

1.3 Model 2
In model 2, the following assumptions are made: oxygen can form two bonds, the NH2 group can
form two bonds, there are no cycles and there is one association constant. The range of allowed
aggregates for this case with sizes up to i = 3 is shown in Figure S13.

The free energy of hydrogen bonding can be written as

F = Mε− kT ln
(
pMΞ

)
, (23)

where M is the number of hydrogen bonds and the number of ways to form these bonds is

Ξ =

(
2N !

(2N −M)!

)2
1

M !
. (24)

Minimization of the free energy yields
m

(2n−m)
2 = K. (25)

Next, it is assumed that the concentration of aggregates of size i can be written as

ci = αiK
i−1ci1, (26)

so that the total concentration is

n =

∞∑
i=1

ici, (27)
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and the concentration of bonds is

m =

∞∑
n=1

(n− 1) cn. (28)

Then, we substitute Equations 27 and 28 into Equation 25 written in the form m = K (2n−m)
2

and, equating coefficients in front of like powers of c1, we can calculate the first terms of the αi

sequence. The OEIS tells us that this sequence is probably that known as A000309, whose ith
term is given by

αi = 2i
(3i)!

(2i+ 1)! (i+ 1)!
. (29)

In the following section, a proof is given that the sequence A000309 is indeed the set of coefficients
αi that satisfy Equation 25. Using this result for the αi, the total concentration can be written
down as

n = c1 · 3F2

([
4

3
,

5

3
, 2

]
,

[
5

2
, 3

]
,

27Kc1
2

)
. (30)

1.3.1 The proof

This proof was provided by Mark van Hoeij.
Let us consider αi, m and n defined according to Equations 29, 28, and 27 respectively. Then,

let us define a function

y = 2n−m =
1

K

∞∑
i=1

(i+ 1)αix
i, (31)

where x = Kc1. Next, introduce M = Km and Y = Ky. Then, Equation 25 is equivalent to

M = Y 2. (32)

If a function Z is defined by

Z = 1 + Y =

∞∑
i=0

(i+ 1)αix
i (33)

(the difference with Y is that the summation starts from 0), it can be verified that

(27x− 2)xZ ′′ + (54x− 3)Z ′ + 6Z = 0. (34)

Indeed, since

3Z ′ = 3

∞∑
i=0

(i+ 1) iαix
i−1 = 3

∞∑
i=0

(i+ 1) (i+ 2)αi+1x
i (35)

and

2xZ ′′ = 2

∞∑
i=0

(i+ 1) i (i− 1)αix
i−1 = 2

∞∑
i=0

i (i+ 1) (i+ 2)αi+1x
i, (36)

Equation 34 is equivalent to(
27i2 + 27i+ 6

)
αi = (i+ 2) (2i+ 3)αi+1, (37)

which is true for αi defined by Equation 29. Differentiating Equation 34 gives

(27x− 2)xZ ′′′ + (108x− 5)Z ′′ + 60Z ′ = 0, (38)

or, since Y ′ = Z ′,
(27x− 2)xY ′′′ + (108x− 5)Y ′′ + 60Y ′ = 0, (39)

and it can be found that u = Y 2 satisfies the equation

(27x− 2)2x3u′′′′′′ + 2x2(270x− 13)(27x− 2)u′′′′′ + 35x(2592x2 − 246x+ 5)u′′′′+

+(204120x2 − 13440x+ 140)u′′′ + (146160x− 5040)u′′ + 20160u′ = 0.
(40)

To show this, we note that, if we take Y 2 and differentiate repeatedly, then all the resulting
expressions can be written in terms of products of Y , Y ′ and Y ′′, because all instances of Y ′′′
can be eliminated with Equation 39. Next, we verify that M =

∑∞
i=1 (i− 1)αix

i also satisfies
Equation 40. Since both M and Y 2 satisfy Equation 40, the functions M and Y 2 are equal if the
first six terms in their expansions in powers of x coincide (because the differential equation is sixth
order), which we can check by direct computation.
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Figure S14: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 2m.
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Figure S15: Dependence of lnK on 1/T for model 2m.

1.3.2 Model 2m

Let us assume first that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in unimers. In this case, c1 = Ax where x is the height of the peak and A is some constant.
Substituting this in Equation 30 gives

n = Ax ·3 F2

([
4

3
,

5

3
, 2

]
,

[
5

2
, 3

]
,

27KAx

2

)
. (41)

The results of the fit are shown in Figures S14 and S15. The value of AICc in Figure S14 is
−502.5, and the estimates of the model parameters given by the fit in Figure S15 are lnC =
−2.5± 0.3 ln[l/mol] and ε = −0.8± 0.2 kcal/mol with r2 = 0.75.

1.3.3 Model 2g

Let us assume now that the 3530cm−1 peak corresponds to the out-of-phase vibrations of NH2

free groups. As in the case of model 1g, we need to include more information about the aggregate
in order to calculate the concentration of free groups. If we distinguish between molecules with
both hydrogens bonded (N2 is the number of such molecules) and only one bonded hydrogen in
the amide group (N1 is the number of such molecules) we can write the number of ways to form
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Figure S16: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 2g.
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Figure S17: Dependence of lnK on 1/T for model 2g.

bonds as (see model 6 for more details)

Ξ =
2N !

(2N −M)!

N !2N1

(N −N2 −N1)!N1!N2!

=
2N !

(2N −M)!

N !22N−M−2Nf

Nf ! (2N −M − 2Nf )! (Nf +M −N)!
,

(42)

where M = N1 + 2N2 and Nf = N − N1 − N2. Minimizing the free energy and eliminating M
gives

c =
nf

(1− 2Knf )
2 =

Ax

(1− 2KAx)
2 , (43)

where, according to our peak attribution assumption, nf = Ax.
The results of this fit are shown in Figures S16 and S17. The value of AICc for the fit in

Figure S16 is −499.7, and the fit in Figure S17 yields estimates for the model parameters of
lnC = −1.2± 0.7 ln[l/mol] and ε = −0.7± 0.5 kcal/mol, with r2 = 0.38.

1.3.4 Model 2s

Let us assume here that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the free
NH2 group in unimers and dimers. In this case, Ax = c1 + 4Kc21, where x is the height of the peak
and A is a constant. Substituting this in Equation 30 yields

c =
−1 +

√
1 + 16AKx

8K
·3 F2

([
4

3
,

5

3
, 2

]
,

[
5

2
, 3

]
,

27

16

(
−1 +

√
1 + 16AKx

))
. (44)
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Figure S18: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 2s.
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Figure S19: Dependence of lnK on 1/T for model 2s.

The results of the fit are shown in Figures S18 and S19. The value of AICc for the fit shown
in Figure S18 is −494.2, and the fit in Figure S19 yields estimates for the model parameters of
lnC = 0.50± 0.2 ln[l/mol] and ε = −0.86± 0.1 kcal/mol, with r2 = 0.92.

The free energy due to hydrogen bonding in model 2 in terms of the volume fraction of hydrogen
bonding molecules φ = cv and the dimensionless association constant K ′ = K/v has the form

fHB = m+ 4φ ln
(2φ−m)

2φ
, (45)

where m is a solution of the equation m/ (2φ−m)
2

= K ′.

1.4 Model 3
In this model, it is assumed that there is only one bond per oxygen and one bond per NH2, there
are no cyclic dimers and there is only one association constant. The range of allowed aggregates
with aggregation numbers up to i = 3 is shown in Figure S20; aggregates are chain-like in this
case.

The number of ways to form bonds in model 3 can be written as

Ξ =

(
N !

(N −M)!

)2
4M

M !
, (46)

and minimization of the free energy gives

M

4 (N −M)
2 =

K

V
. (47)
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i=3, α3=16

Figure S20: Schematic representation of allowed aggregates with size up to i = 3 in model 3.
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Figure S21: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 3g.

In this case, the concentration of aggregates of size i is

ci = 4i−1Ki−1ci1, (48)

so for the total concentration we have

c =
c1

(1− 4Kc1)
2 . (49)

The concentration of free groups is given by nf = n − m, so the relation between the total
concentration and the concentration of free groups is

n = nf + 4Kn2f . (50)

1.4.1 Model 3m

Let us first assume that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in unimers. In this case, c1 = Ax, where x is the height of the peak and A is some constant.
The fitting equation is then

c =
Ax

(1− 4KAx)
2 . (51)

This expression is the same as the fitting equation for model 2g, but with an association constant
that is two times smaller. This means that the fitting results are the same, with the values of
the model parameters and statistical measures being AICc = −499.7, lnC = −1.9± 0.7 ln[l/mol],
ε = −0.7± 0.5 kcal/mol, and r2 = 0.38.

1.4.2 Model 3g

In this model, it is assumed that the 3530cm−1 peak corresponds to the out-of-phase vibrations of
the free NH2 groups. Here,

c = Ax+ 4KA2x2. (52)

The results of the fitting procedure are shown in Figures S21 and S22. The value of the AICc
parameter for the fit in Figure S21 is −457.6, and the estimates of the model parameters given by
the fit in S22 are lnC = −0.15± 3 ln[l/mol] and ε = −1.0± 1.9 kcal/mol, with r2 = 0.07.

1.4.3 Model 3s

Let us first assume that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the free
NH2 groups in unimers and dimers. In this case, Ax = c1 + 4Kc21, where x is the height of the
peak and A is some constant. The fitting equation in this case is

c =
−1 +

√
1 + 16KAx

2K
(
−3 +

√
1 + 16KAx

)2 . (53)
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Figure S22: Dependence of lnK on 1/T for model 3g.
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Figure S23: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 3s.

The results of the fitting procedure are shown in Figures S23 and S24, and the values of the
model parameters and statistical measures are AICc = −499.3, lnC = 1.58 ± 0.8 ln[l/mol], ε =
−0.7± 0.5 kcal/mol, and r2 = 0.37.

The free energy density of hydrogen bonding in model 3, written in terms of the volume fraction
of hydrogen bonding molecules φ = cv and the dimensionless association constant K ′ = K/v, has
the form

fHB = m+ 2φ ln
(φ−m)

φ
, (54)

where m is a solution of the equation m/4 (φ−m)
2

= K ′.

1.5 Model 4
Model 4 is analogous to model 1 but with one bond allowed per NH2 group and two bonds allowed
per O in each acrylamide molecule (see Figure S25). This means that the expression for the relation
between c and c1 is the same in model 4 as in model 1. However, the number of free NH2 groups
in model 4 is different from model 1 and is equal to the number of aggregates as there is only one
free NH2 per aggregate. We can then write that

nf =

∞∑
i=1

ci =

∞∑
i=1

2i−1 (2i)!

i! (i+ 1)!
Ki−1ci1 =

1− 4c1K −
√

1− 8c1K

8c1K2
. (55)
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Figure S24: Dependence of lnK on 1/T for model 3s.

i=1, α1=1

i=2, α2=4

i=3, α3=20

Figure S25: Schematic representation of possible aggregates with size up to i = 3 in model 4.
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Figure S26: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 4g.
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Figure S27: Dependence of lnK on 1/T for model 4g.

Substituting this expression into Equation 19 gives

c =
nf + 2Kn2f
1− 2Knf

. (56)

1.5.1 Model 4m

First, we assume that the 3530cm−1 peak corresponds to out-of-phase vibrations of free acrylamide
molecules. The fitting equation is the same as in model 1m, so we do not repeat the fitting procedure
here.

1.5.2 Model 4g

With the free groups assumption, we can the write fitting equation as

c =
Ax+ 2KA2x2

1− 2KAx
. (57)

The results of the fit are shown in Figures S26 and S27. The quality of the fit in Figure S26
is characterized by the parameter AICc = −495.8, and the estimates for the model parameters
resulting from the fit in Figure S27 are lnC = −0.8 ± 0.9 ln[l/mol] and ε = −0.7 ± 0.5 kcal/mol,
with r2 = 0.28.
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Figure S28: Schematic representation of aggregates with size up to i = 5 in model 5. In contrast
to the figures for one-parameter models, only configurations of aggregates with different energies
are shown. The quantity aij gives the number of different configurations for an aggregate of i
molecules that contains 2 (j − 1) ε2 bonds.

1.5.3 Model 4s

In this case, we assume that the 3530cm−1 peak corresponds to out-of-phase vibrations of free
NH2 groups in unimers and dimers. The fitting equation and all fitting results are the same as for
model 1s.

1.6 Model 5
Model 5 is the first model with “cooperativity” we consider. In this model, we allow one bond
per oxygen, two bonds per NH2 group, no cycles, and two association constants (corresponding to
bond energies ε1 and ε2) that depend on the bonding state of the NH2 group in the donor molecule
(see Figure S28).

Let us denote the number of molecules with donors involved in ε1 bonds as N1 (or, in other
words, the number of donor molecules with one bonded hydrogen) and the number of molecules
involved in ε2 bonds as N2 (in other words, the number of donor molecules with two bonded
hydrogens). Correspondingly, the number of ε1 bonds is M1 = N1 and number of ε2 bonds is
M2 = 2N2.

The number of ways to form M1 bonds with energy ε1 and 2N2 bonds with energy ε2 can be
written as

Ξ =
N !2N1+2N2

(N −N1 − 2N2)!

N !2N1

(N −N1 −N2)!N1!N2!
, (58)

where the first factor is the number of ways to choose an acceptor for M = N1 + 2N2 bonds, and
the second factor is the number of ways to choose N1 and N2 donor groups out of N molecules,
taking into account the fact that in molecules with only one bonded hydrogen, this hydrogen can
be chosen in two ways.

The free energy of hydrogen bonding in model 5 is

FHB = ε1M1 + ε2M2 − kT ln
(
pM1
1 pM2

2 Ξ
)
, (59)
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and minimizing this with respect to M1 and M2 gives
N1

4 (N −N1 − 2N2) (N −N1 −N2)
=
K1

V
(60)

and
N2

4 (N −N1 −N2) (N −N1 − 2N2)
2 =

K2
2

V 2
. (61)

It is interesting to note that the following equality exists:

(2N)!

(2N −M)!M !
=

M/2∑
N2=0

N !2M−2N2

(N −M +N2)! (M − 2N2)!N2!
, (62)

which shows that model 5 reduces to model 1 when ε1 = ε2 – a property that we make use of in
our calculations on model 1g above.

Now, we look for a relation between the total concentration and the concentration of unimers,
and assume that concentration of aggregates of size i with 2 (j − 1) ε2-bonds has the form

cij = αijK
2(j−1)
2 K

i−1−2(j−1)
1 ci1, 1 ≤ j ≤ (i+ 1) /2. (63)

Substituting this expression in Equations 60 and 61 gives

αij =
22i−2j

(j − 1)!j!

(i− 1)!

(i− 2j + 1)!
, (64)

and the dependence of the total solution concentration on the concentration of unimers can then
be calculated to be

c =

∞∑
i=1

(i+1)/2∑
j=1

iαijK
2(j−1)
2 K

i−1−2(j−1)
1 ci1 =

1−
√

1− 16K2
2c

2
1

(1−4K1c1)
2

8K2
2c1

√
1− 16K2

2c
2
1

(1−4K1c1)
2

. (65)

Alternatively, the coefficients αij can be found from the generating function for the family of trees
shown in Figure S28. If we denote c1K1 as z1 and c1K2 as z2, we can write down the equation for
the generating function as

G = 1 + 4Gz1 + 4z22G
2, (66)

which can be solved to find

G =
1− 4z1 ±

√
(1− 4z1)

2 − 16z22

8z22
(67)

where the required expression is that with the negative root. It is straightforward to verify that
expansion of this expression in powers of z1 and z2 will yield the values of αij given by Equation
64. We also can see that if we put z1 = z2 we will recover the generating function for model 1, as
would be expected from the fact that the two models are equivalent when ε1 = ε2.

The concentration of free groups is given by nf = c− n1 − n2 and eliminating n1 and n2 from
Equations 60 and 61 gives

c =
1− 4K1nf + 16K2

2n
2
f − (1− 4K1nf )

√
1 + 16K2

2n
2
f

8K2
2nf

. (68)

1.6.1 Model 5m

Let us assume first that the 3530cm−1 peak corresponds to out-of-phase vibrations of the NH2

group in free molecules. In this case, the fitting equation is

c =
1−

√
1− 16A2K2

2x
2

(1−4AK1x)
2

8AK2
2x
√

1− 16A2K2
2x

2

(1−4AK1x)
2

. (69)

The results of the fit are shown in Figures S29 and S30. The value of the AICc parameter for the
nonlinear fit in Figure S29 is −501.7, and the estimates of the model parameters given by the fits
in Figure S30 are lnC1 = −19.6±5 ln[l/mol], ε1 = −11±3 kcal/mol, lnC2 = 3.4±1 ln[l/mol], and
ε2 = 2.4±0.7 kcal/mol. In all our two-parameter models, we have two coefficients of determination,
which in this case are given by r21 = 0.76 and r22 = 0.73.
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Figure S29: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 5m.
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Figure S30: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 5m.
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Figure S31: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 5s.
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Figure S32: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 5s.

1.6.2 Model 5g

Now we assume that the 3530cm−1 peak corresponds to out-of-phase vibrations of free NH2 groups.
In this case, the fitting equation is

c =
1− 4AK1x+ 16A2K2

2x
2 − (1− 4AK1x)

√
1 + 16A2K2

2x
2

8AK2
2x

. (70)

In this case, we were unable to obtain any results, as the fitting procedure did not converge.

1.6.3 Model 5s

We also check the possibility that the 3530cm−1 peak does not correspond to a single species
(such as all free molecules or all free groups), but instead corresponds to absorption by free groups
in some subset of aggregates. Here we check the subset composed of unimers and dimers, so
Ax = c1 + 4K1c

2
1.

The results of the fit are shown in Figures S31 and S32. The value of AICc for the fit in
Figure S31 is −501.7, and the estimates of the model parameters given by the fits in S32 are
lnC1 = −21.5 ± 6 ln[l/mol], ε1 = −12.5 ± 3.5 kcal/mol, lnC2 = 1.95 ± 1 ln[l/mol], and ε2 =
1.3± 0.6 kcal/mol, with r21 = 0.76 and r22 = 0.56.

1.7 Model 6
In model 6, we allow one bond per oxygen, two bonds per NH2 group, no cycles and two association
constants. However, in contrast to model 5, the association constant is now determined by the
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Figure S33: Schematic representation of aggregates with size up to i = 5 in model 6. Only
aggregates with different total bond energies are shown.

bonding state of the acceptor in the donor molecule (see Figure S33). Let the bond energy be
denoted by ε1 in the case when the oxygen in the donor amide group is free and by ε2 otherwise.
Then, the number of bonds with energy ε1 is M1, the number of bonds with energy ε2 is M2, the
number of molecules with donors involved in ε1 bonds is N1, and the number of molecules involved
in ε2 bonds is N2. The number of ways to form bonds can then be written as

Ξ =
N !2M1+M2

(N −M1 −M2)!

(2N − 2M1 − 2M2)!

(2N − 3M1 − 2M2)!

(2M1 + 2M2)!

(2M1 +M2)!

1

M1!M2!
, (71)

where the first factor in Ξ is the number of ways to choose an acceptor for M1 +M2 bonds. This
uses the assumption that there is only one bond per oxygen. The second factor is the number of
ways to choose a donor for ε1 bonds, with 2N − 2M1 − 2M2 giving the number of hydrogens in
molecules with free acceptor groups. The third factor is the number of ways to choose a donor for
ε2 bonds. The hydrogens for these bonds should be chosen from molecules with bonded acceptors.
The number of such molecules is M1 +M2 and they contain 2M1 + 2M2 hydrogens. As usual, the
last term accounts for the indistinguishability of the bonds.

Minimization of the free energy gives

M1 (2M1 +M2)
2

(N −M1 −M2)

2 (M1 +M2)
2

(2N − 3M1 − 2M2)
3 =

K1

V
(72)

M2 (2M1 +M2) (N −M1 −M2)

2 (M1 +M2)
2

(2N − 3M1 − 2M2)
2 =

K2

V
. (73)

We can notice that there are two types of aggregates: those with one ε1 bond and those with two
ε1 bonds. Then, the concentrations of aggregates with size i and either one or two ε1 bonds can
be written as

ci1 = αi1K1K
i−2
2 ci1, i ≥ 2 (74)

ci2 = αi2K
2
1K

i−3
2 ci1, i ≥ 3, (75)

and the total concentration of acrylamide and concentrations of each type of bond as

c = c1 +

∞∑
i=2

ici1 +

∞∑
i=3

ici2 (76)
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m1 =

∞∑
i=2

ci1 +

∞∑
i=3

2ci2 (77)

m2 =

∞∑
i=2

(i− 2) ci1 +

∞∑
i=3

(i− 3) ci2. (78)

Substituting these expressions into Equations 72 and 73 leads to the following expressions for αi1,2:

αi1 = 2i
(2i− 2)!

(i− 1)!i!
, i ≥ 2 (79)

αi2 = 2i+1 (2i− 3)!

(i− 3)! (i+ 1)!
, i ≥ 3. (80)

For the dependence of the total concentration on the concentration of unimers we have

c =
16c21K1K

3
2 − 16c21K

2
2K

2
1 +K2

1 − 4c1K
2
1K2

8c1K4
2

√
1− 8c1K2

+
8c21K

4
2 − 16c21K1K

3
2 −K2

1 + 8c21K
2
1K

2
2

8c1K4
2

.

(81)

Another way to determine the coefficients αi1 and αi2 is to find an expression for the generating
function, as was done in for models 1 and 5. In the current case, we have

G (z1, z2) = 1 + 4z1G1 (z2) + 4z21G
2
1 (z2) , (82)

where

G1 (z2) =
1− 4z2 −

√
1− 8z2

8z22
, (83)

the generating function for model 1.
Now, let us turn to the calculation of the number of free groups. In order to do this, it is

necessary to distinguish molecules with one hydrogen bond per NH2 group and two hydrogen
bonds per NH2 group. We denote the number of molecules with one bonded hydrogen and free
oxygen by N1 (Figure S34) and the number of molecules with two bonded hydrogens and free
oxygen by N3, so that M1 = N1 + 2N3. Similarly, we denote the number of molecules with
one bonded hydrogen and bonded oxygen by N2, and the number of molecules with two bonded
hydrogens and bonded oxygen, by N4, so that M2 = N2 + 2N4. Then, the number of ways to form
bonds is

Ξ =
N !2M1+M2

(N −M1 −M2)!

(N −M1 −M2)!2N1

(N −M1 −M2 −N1 −N3)!N1!N3!

(M1 +M2)!2N2

(M1 +M2 −N2 −N4)!N2!N4!
. (84)

After simplification, this becomes

Ξ =
N ! (N1 +N2 + 2N3 + 2N4)!4N1+N2+N3+N4

(N − 2N1 − 3N3 −N2 − 2N4)! (N1 + 2N3 +N4)!N1!N2!N3!N4!
. (85)

Also, for simplicity, we assume first that there are four association constants and correspondingly
four different bond energies, so we can write for the free energy of hydrogen bonding

FHB = ε1N1 + ε2N2 + 2ε3N3 + 2ε4N4 − kT ln
(
pN1
1 pN2

2 p2N3
3 p2N4

4 Ξ
)
. (86)

Minimization of this expression gives

N1 (N1 + 2N3 +N4)

4 (N1 +N2 + 2N3 + 2N4) (N − 2N1 − 3N3 −N2 − 2N4)
2 =

K1

V
(87)

N2

4 (N1 +N2 + 2N3 + 2N4) (N − 2N1 − 3N3 −N2 − 2N4)
=
K2

V
(88)

N3 (N1 + 2N3 +N4)
2

4 (N1 +N2 + 2N3 + 2N4)
2

(N − 2N1 − 3N3 −N2 − 2N4)
3 =

K2
3

V 2
(89)
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Figure S34: Schematic representation of aggregates with size up to i = 5 in the modification of
model 6 with four association constants. Only aggregates with different total bond energies are
shown.
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N4 (N1 + 2N3 +N4)

4 (N1 +N2 + 2N3 + 2N4)
2

(N − 2N1 − 3N3 −N2 − 2N4)
2 =

K2
4

V 2
, (90)

and the number of free groups is given by Nf = N −N1 −N2 −N3 −N4.
We notice that, since only one bond per oxygen is allowed, all aggregates have either one ε1

bond or two ε3 bonds, which lie at the “root” of each aggregate. Furthermore, we note that the
distribution of ε2 and ε4 bonds is very similar to the original model 6. Then, we can label different
aggregates by the set of three numbers {1ij} or {3ij} where the first letter denotes the type of
“root” (type 1 bonds or type 3 bonds), i is the number of molecules in the aggregate and j the
number of type 4 bonds in aggregate. The concentrations of aggregates can then be written as

c1ij = α1ijK1K
i−2j
2 K2j−2

4 ci1 (91)

c3ij = α3ijK
2
3K

i−1−2j
2 K2j−2

4 ci1 (92)

and the concentrations of molecules in different bonding states can be calculated to be

c = c1 +

∞∑
i=2

i/2∑
j=1

ic1ij +

∞∑
i=3

(i−1)/2∑
j=1

ic3ij (93)

c1 =

∞∑
i=2

i/2∑
j=1

c1ij =

∞∑
j=1

∞∑
i=2j

c1ij (94)

c3 =

∞∑
i=3

(i−1)/2∑
j=1

c3ij =

∞∑
j=1

∞∑
i=2j+1

c3ij (95)

c2 =

∞∑
j=1

∞∑
i=2j

(i− 2j) c1ij +

∞∑
j=1

∞∑
i=2j+1

(i− 1− 2j) c3nj (96)

c4 =

∞∑
j=1

∞∑
i=2j

(j − 1) c1ij +

∞∑
j=1

∞∑
i=2j+1

(j − 1)C3ij . (97)

Additionally, we can write that

nf = c1 +

∞∑
j=1

∞∑
i=2j

jc1ij +

∞∑
j=1

∞∑
i=2j+1

(j + 1) c3ij . (98)

Substituting these expressions into Equations 87, 88, 89, 90 gives

α1ij = 22i−2j
1

j! (j − 1)!

(i− 2)!

(i− 2j)!
, i ≥ 2j (99)

α3ij = 22i−2j−1
1

(j + 1)! (j − 1)!

(i− 2)!

(i− 2j − 1)!
, i ≥ 2j + 1. (100)

We can now evaluate the sums and calculate the dependence of nf on c1.
Since we assumed that equilibrium is described by two association constants in model 6, we

put K3 = K1 and K4 = K2 and find

nf =
c1
(
4c1K1K

2
2 +K2

2

√
1− 8c1K2 +K2

1

(
1− 4c1K2 −

√
1− 8c1K2

))
K2

2

√
1− 8c1K2

. (101)

As we know the dependence of both c and nf on c1, we have parametrically defined a function
c (nf ), which we can use to fit experimental data in case of the free groups assumption.

1.7.1 Model 6m

Here, it is assumed that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in free molecules. In this case, we put c1 = Ax and substitute it into Equation 81.
The fitting results are shown in Figures S35 and S36. The value of the information criterion

for the fit shown in Figure S35 is AICc = −501.7, and the estimates of the model parameters
given by the fits in Figure S36 are lnC1 = −9.9 ± 1 ln[l/mol], ε1 = −5.2 ± 0.8 kcal/mol, lnC2 =
−0.62± 0.5 ln[l/mol], and ε2 = 0.1± 0.2 kcal/mol, with r21 = 0.91 and r22 = 0.03.
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Figure S35: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 6m.
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Figure S36: Dependence of lnK1 (circles) and lnK2 (squares) on 1/T for model 6m.
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Figure S37: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 6g.
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Figure S38: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 6g.

1.7.2 Model 6g

In this section, it is assumed that the 3530cm−1 peak corresponds to absorption by free groups, so
that nf = Ax. The results of the fitting procedure are shown in Figures S37 and S38. For the fit
in Figure S37, we have that AICc = −493.8. The estimates of the model parameters for the fits
in Figure S38 are lnC1 = −11.5± 5 ln[l/mol], ε1 = −5.9± 3 kcal/mol, lnC2 = 3.5± 0.6 ln[l/mol],
and ε2 = −2.2± 0.3 kcal/mol, with r21 = 0.71 and r22 = 0.90.

1.7.3 Model 6s

For the assumption Ax = c1 +4K1c
2
1 +4K2

1c
3
1 (NH2 groups in unimers, dimers and trimers without

ε2-bonds), we have the fitting results shown in Figures S39 and S40. The quality of fit in Figure S39
can be characterized by AICc = −501.7. The estimates of parameters for the fits in Figure S40
are lnC1 = −11.89 ± 2 ln[l/mol], ε1 = −6.7 ± 1.1 kcal/mol, lnC2 = −3.18 ± 0.3 ln[l/mol], and
ε2 = −1.6± 0.2 kcal/mol, with r21 = 0.91 and r22 = 0.95.

The free-energy density of hydrogen bonding in model 6 in terms of the volume fraction of
hydrogen bonding molecules φ = cv and dimensionless association constants K ′1 = K1/v, K ′2 =
K2/v has the form

fHB = m1 +m2 + φ ln
(2φ− 3m1 − 2m2)

2

4φ (φ−m1 −m2)
, (102)

where m1 and m2 can be calculated by taking the sums in Equations 77 and 78 to be functions
of the association constants and c1. Then, we can consider c1 as a parameter and now have a
parametrically defined function fHB (φ).
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Figure S39: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 6s.
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S31



i=1

i=2

i=3 

ε1
ε1

ε1

ε2

ε2

ε1 ε1

ε2
ε1

ε2

ε1

ε2

ε1

ε1

ε2

ε2

ε2

ε2ε2

ε1

ε1

ε2ε2

ε2ε2

ε1

ε1

ε1

ε1ε1

i=4 

i=5 

Figure S41: Schematic representation of aggregates with size up to i = 5 in model 7. Only
configurations corresponding to different energies are shown.

1.8 Model 7
In model 7, we again allow one bond per oxygen, two bonds per NH2 group, no cyclic dimers and
two association constants. However, in contrast to models 5 and 6, the association constant is now
determined by the bonding state of the NH2 group in the acceptor molecule (see Figure S41).

We denote the energy of a bond formed by an acceptor with a free donor group by ε1 and the
energy of a bond formed by an acceptor molecule with one or two bonded hydrogens by ε2. As in
some previous models, we will first consider a more detailed case (with three association constants),
in which the situations corresponding to one bonded hydrogen in an acceptor molecule (ε2) and to
two bonded hydrogens in an acceptor molecule (ε3) differ from each other (see Figure S42). We
write M1 for the number of bonds with energy ε1, M2 for the number of bonds with energy ε2, and
M3 for the number of bonds with energy ε3 (see Figure S42). Similarly, we write N1 for the number
of free molecules, N2 for the number of molecules with a free oxygen and one bonded hydrogen,
N3 for the number of molecules with a free oxygen and two bonded hydrogens, N4 for the number
of molecules with a bonded oxygen and both hydrogens free, N5 for the number of molecules with
a bonded oxygen and one bonded hydrogen, and N6 for the number of molecules with a bonded
oxygen and two bonded hydrogens. Among these values, the following relations exist: M1 = N4,
M2 = N5, M3 = N6, N =

∑6
i=1Ni, M1 +M2 +M3 = N2 + 2N3 +N5 + 2N6.

In this case the number of ways to choose acceptors is

N !2N4+N5+N6

(N −N4 −N5 −N6)!
. (103)
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The number of ways to choose donors is (this expression is effectively the same thing as Equation 62)

(N −N4 −N5 −N6)!2N2

N1!N2!N3!

(N4 +N5 +N6)!2N5

N4!N5!N6!
, (104)

and finally we have

Ξ =
N !22N−2N1−2N4 (N4 +N5 +N6)!

N1! (2N − 2N1 − 3N4 − 2N5 −N6)! (N1 + 2N4 +N5 −N)!N4!N5!N6!
. (105)

Minimization of the free energy yields the following set of equations:

4N1 (N1 + 2N4 +N5 −N)

(2N − 2N1 − 3N4 − 2N5 −N6)
2 = 1 (106)

4N4 (N1 + 2N4 +N5 −N)
2

(2N − 2N1 − 3N4 − 2N5 −N6)
3

(N4 +N5 +N6)
=
K1

V
(107)

N5 (N1 + 2N4 +N5 −N)

(2N − 2N1 − 3N4 − 2N5 −N6)
2

(N4 +N5 +N6)
=
K2

V
(108)

N6

(2N − 2N1 − 3N4 − 2N5 −N6) (N4 +N5 +N6)
=
K3

V
. (109)

For the concentrations of aggregates, we may write

Cijk = αijkK
i−1−j−k
1 Kj

2K
k
3 c

i
1, (110)

where 0 ≤ j ≤ i− 2 and there are two series of k values that satisfy 2k+ j+ 2 = i for j and i both
odd or even and 2k + j + 3 = i otherwise. Based on these relations, one index may be removed
and two series of concentrations introduced instead:

C1ik = α1ikK
k+1
1 Ki−2k−2

2 Kk
3 c

i
1, 0 ≤ k ≤ ∞, 2k + 2 ≤ i ≤ ∞ (111)

C2ik = α2ikK
k+2
1 Ki−2k−3

2 Kk
3 c

i
1, 0 ≤ k ≤ ∞, 2k + 3 ≤ i ≤ ∞. (112)

Therefore, we can write

c = c1 +
∞∑
k=0

∞∑
i=2k+2

iα1ikK
k+1
1 Ki−2k−2

2 Kk
3 c

i
1 +

∞∑
k=0

∞∑
i=2k+3

iα2ikK
k+2
1 Ki−2k−3

2 Kk
3 c

i
1 (113)

n1 = c1 (114)

n4 =

∞∑
k=0

∞∑
i=2k+2

(k + 1)α1ikK
k+1
1 Ki−2k−2

2 Kk
3 c

i
1+

∞∑
k=0

∞∑
i=2k+3

(k + 2)α2ikK
k+2
1 Ki−2k−3

2 Kk
3 c

i
1 (115)

n5 =

∞∑
k=0

∞∑
i=2k+2

(i− 2k − 2)α1ikK
k+1
1 Ki−2k−2

2 Kk
3 c

i
1

+

∞∑
k=0

∞∑
i=2k+3

(i− 2k − 3)α2ikK
k+2
1 Ki−2k−3

2 Kk
3 c

i
1

(116)

n6 =

∞∑
k=0

∞∑
i=2k+2

kα1ikK
k+1
1 Ki−2k−2

2 Kk
3 c

i
1 +

∞∑
k=0

∞∑
i=2k+3

kα2ikK
k+2
1 Ki−2k−3

2 Kk
3 c

i
1 (117)

α1ik = 4i−1−k
(i− 2)!

(i− 2− 2k)!k! (k + 1)!
(118)
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Figure S43: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 7m.
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Figure S44: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 7m.

α2ik = 4i−2−k
(i− 2)! (2k + 2)

(i− 3− 2k)! (k + 1)! (k + 2)!
(119)

By summing the series, assuming that K2 = K3, it can be shown that

c =
1− 4c1K2

8c1K2
2

√
1− 8c1K2 − 16c21 (K1 −K2)K2

+
8c21K2 (K2 −K1)− 1

8c1K2
2

. (120)

Finally, the number of free groups, which is the sum of c1 and n4, can be calculated as

nf = c1 −
c1K1

K2
+

c1K1

K2

√
1− 8c1K2 − 16c21 (K1 −K2)K2

. (121)

1.8.1 Model 7m

Here, it is assumed that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in free molecules. In this case, we put c1 = Ax and substitute it into Equation 120.
The fitting results are shown in Figures S43 and S44. The quality of fit in Figure S43 can

be characterized by AICc = −501.7, and the estimates of the model parameters for the fits in
Figure S44 are lnC1 = −11.6±2 ln[l/mol], ε1 = −6.2±1 kcal/mol, lnC2 = 1.3±0.8 ln[l/mol], and
ε2 = 1.2± 0.5 kcal/mol, with r21 = 0.9 and r22 = 0.62.
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Figure S45: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 7g.
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Figure S46: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 7g.

1.8.2 Model 7g

Next, it is assumed that the 3530cm−1 peak corresponds to absorption by free groups, so that
nf = Ax.

The results of the fitting procedure are shown in Figures S45 and S46. The value of AICc for
the fit in Figure S45 is −497.4. The estimates of the model parameters for the fits in Figure S46
are lnC1 = −12.4 ± 3 ln[l/mol], ε1 = −6.5 ± 1.6 kcal/mol, lnC2 = −2.9 ± 0.3 ln[l/mol], and
ε2 = −1.8± 0.2 kcal/mol, with r21 = 0.80 and r22 = 0.95.

1.8.3 Model 7s

In the case of the assumption Ax = c1 + 4K1c
2
1 + 4K2

1c
3
1 (NH2 groups in unimers, dimers and

trimers without ε2-bonds) the fitting results shown in Figures S47 and S48 are found. The value of
the information criterion for the fit in Figure S47 is AICc = −501.7, and the estimates of the model
parameters given by the fits in Figure S48 are lnC1 = −14.4±2 ln[l/mol], ε1 = −8.2±1.4 kcal/mol,
lnC2 = −1.5± 0.3 ln[l/mol], and ε2 = −0.6± 0.2 kcal/mol, with r21 = 0.9 and r22 = 0.69.

1.9 Model 8
In model 8, we allow only one bond per oxygen and one bond per NH2 group, so all aggregates
are supposed to be linear. We also assume that the association equilibrium is described by two
association constants and there are no cyclic dimers. We suppose that the bond has energy ε1 if
the acceptor of donor molecule is free and ε2 otherwise (see Figure S49). It is worth mentioning
that this model does not change if we assume that the energy of the bond is defined by the bonding
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Figure S47: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 7s.
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Figure S48: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 7s.
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Figure S49: Schematic representation of aggregates with size up to i = 5 in model 8. Only
configurations corresponding to different energies are shown.

state of the donor group in the acceptor molecule. The number of free molecules will be denoted
by N0, the number of molecules with one bonded hydrogen and free oxygen by N1, the number of
molecules with one bonded hydrogen and one bond per oxygen by N2, and the number of molecules
with one bond per oxygen and free hydrogens by N3. Then, the number of ways to form bonds is

Ξ =
N !2N3+N2

(N −N3 −N2)!

(N0 +N1)!2N1

N1!N0!

(N3 +N2)!2N2

N2!N3!
, (122)

where the first factor is the number of ways to choose acceptors, the next factor is the number of
ways to choose donors for bonds with energy ε1, and the following factor is the number of ways to
choose bonds with energy ε2.

Taking into account that N3 = N1 and N0 = N − 2N1 −N2, we have

Ξ =
N ! (N1 +N2)!22N1+2N2

(N − 2N1 −N2)! (N1!)
2
N2!

. (123)

Minimization of the free energy gives

N2
1

4 (N1 +N2) (N − 2N1 −N2)
2 =

K1

V
(124)

N2

4 (N1 +N2) (N − 2N1 −N2)
=
K2

V
. (125)

In this model it is straightforward to guess that

ci = ci14i−1K1K
i−2
2 . (126)

Then, the total concentration can be calculated as

c =

∞∑
i=1

ici = c1 +
8c21K1 (1− 2c1K2)

(1− 4c1K2)
2 . (127)

For the concentration of the free groups, nf = c− n1 − n2, we have

nf = c1 +
4K1c

2
1

1− 4K2c1
. (128)

1.9.1 Model 8m

Let us assume first that the 3530cm−1 peak corresponds to the out-of-phase vibrations of the NH2

group in free molecules. In this case, we put c1 = Ax and substitute it into Equation 127.
The fitting results are shown in Figures S50 and S51. The quality of fit in Figure S50 can be

characterized by AICc = −501.5, and the estimates of the model parameters yielded by the fits in
Figure S51 are lnC1 = −12.3±2 ln[l/mol], ε1 = −6.5±1 kcal/mol, lnC2 = 0.1±0.6 ln[l/mol], and
ε2 = 0.3± 0.5 kcal/mol, with r21 = 0.89 and r22 = 0.18.
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Figure S50: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 8m.
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Figure S51: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 8m.
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Figure S52: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 8g.
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Figure S53: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 8g.

1.9.2 Model 8g

Next, it is assumed that the 3530cm−1 peak corresponds to absorption by free groups, so that
nf = Ax.

The fitting results are shown in Figures S52 and S53. The value of the AICc parameter char-
acterizing the quality of fit in Figure S52 is −499.5, and the estimates of the model parameters
resulting from the fits in Figure S53 are lnC1 = −13.6 ± 3 ln[l/mol], ε1 = −7.3 ± 1.6 kcal/mol,
lnC2 = −3.2± 0.4 ln[l/mol], and ε2 = −2.0± 0.2 kcal/mol, with r21 = 0.83 and r22 = 0.95.

1.9.3 Model 8s

In the case of the assumption Ax = c1 + 4K1c
2
1 (NH2 groups in unimers and dimers without ε2-

bonds), the fitting results shown in Figures S54 and S55 are found. The quality of fit in Figure S54
can be characterized by AICc = −501.4. The estimates of the model parameters given by the fits in
Figure S55 are lnC1 = −14.2± 2 ln[l/mol], ε1 = −7.9± 1.4 kcal/mol, lnC2 = −2.4± 0.3 ln[l/mol],
and ε2 = −1.3± 0.2 kcal/mol, with r21 = 0.88 and r22 = 0.93.

1.10 Model 9
In this model, we allow two bonds per oxygen and only one bond per NH2 group. We assume that
the energy of the bond is determined by the bonding state of the oxygen. If the oxygen forms only
one bond, then its energy is ε1, and if it forms two then its energy is ε2. This means that this model
is analogous to model 5 with the roles of the acceptor and donor group exchanged. Therefore, all
equations are the same, apart from the value of the number of free NH2 groups. It is clear that in
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Figure S54: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 8s.
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Figure S55: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 8s.
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Figure S56: Fit of the dependence of the total concentration on the height of the 3530cm−1 peak
at T = 22◦C with model 10g.

case of model 9 there is only one free group per each aggregate, so we have

nf =
1− 4c1K1 −

√
1− 8c1K1 + 16c21K

2
1 − 16c21K

2
2

8c1K2
2

. (129)

We do not repeat the fitting for models 9m and 9s as these cases are equivalent to models 5m
and 5s.

1.10.1 Model 9g

We assume that the 3530cm−1 peak corresponds to absorption by free groups, so that nf = Ax.
The fitting results are not shown, because at higher temperatures they give a negative value of K1.

1.11 Model 10
In this model, we allow two bonds per oxygen and only one bond per NH2 group. We assume
that the energy of the bond is determined by the bonding state of the NH2 group in the acceptor
molecule. If the hydrogen in the acceptor molecule is free, then the bond energy is ε1; otherwise,
it is ε2.

Therefore, this model is analogous to model 6 with the roles of the acceptor and donor groups
exchanged, and all equations are the same, the only difference being the value of the number of
free NH2 groups. It is clear that, in the case of model 9, there is only one free group per each
aggregate, so we have

nf =c1 +
K1

(
1− 4K2c1 +

√
1− 8c1K2

)
2K2

2

+
K2

2

(
1− 8c1K2 + 8c21K

2
2 −
√

1− 8c1K2 + 4c1K2

√
1− 8c1K2

)
8c1K4

2

.

(130)

1.11.1 Model 10g

Here, we assume that the 3530cm−1 peak corresponds to absorption by free groups, so that nf =
Ax.

The results of the fitting procedure are shown in Figures S56 and S57. The quality of fit
in Figure S56 can be characterized by AICc = −501.1. The estimates of the model parameters
for the fits in Figure S57 are lnC1 = −11.3 ± 2 ln[l/mol], ε1 = −6.3 ± 1.0 kcal/mol, lnC2 =
−4.2± 0.5 ln[l/mol], and ε2 = −2.4± 0.3 kcal/mol, with r21 = 0.90 and r22 = 0.95.

S42



0.0031 0.0032 0.0033 0.0034

-1.5

-1.0

-0.5

0.0

 

 

Ln
[K

] [
Ln

[l/
m

ol
]]

103/T [1/K]

Figure S57: Dependence of lnK1 (triangles) and lnK2 (circles) on 1/T for model 10g.

1.12 Model 11
In this model we allow two bonds per oxygen and only one bond per NH2 group. We assume that
the energy of the bond is determined by the bonding state of the acceptor in the donor molecules.
If the oxygen in the donor molecule is free then the bond energy is ε1; otherwise, it is ε2.

Therefore, this model is analogous to model 7 with the roles of the acceptor and donor group
exchanged. All equations are the same, except for the value of the number of free NH2 groups.
Again, as in the two previous models, there is only one free group per aggregate

nf =
1− 4K2c1 − 8K2c

2
1 (K2 −K1)−

√
1− 8K2c1 − 16K2 (K1 −K2) c21

8K2
2c1

. (131)

1.12.1 Model 11g

Here we assume that the 3530cm−1 peak corresponds to absorption by free groups, so that nf = Ax.
However, in this case, the fits do not converge.

2 Selection of the best model
To compare the quality of fit of different models we use Akaike’s information criterion2,3. It states
that the best model is that with the smallest value of

AIC = 2k − 2 ln (L (A,K1,K2, σ)) , (132)

where L (A,K1,K2, σ) is a likelihood function and k is the number of model parameters (4 in
two-parameter models and 3 in one-parameter models because σ is also included in the context
of the likelihood function). The likelihood function for the model with parameters obtained by
minimization of the sum of squared deviations is usually written in the form

L (A,K1,K2, σ) = Πn
i=1

1√
2πσ2

exp

{
− (yi −model (xi, A,K1,K2))

2

2σ2

}
. (133)

In this case, minimization of the sum of squared deviations is equivalent to maximization of the
logarithm of the likelihood function. Then, for the AIC value we have

AIC =2k + n ln (2π) + n ln
(
σ̂2
)

+
(yi −model (xi))

2

2σ̂2

=2k + n ln (2π) + n ln
RSS
n

+ n,

(134)

where the estimate for σ̂ is σ̂2 = RSS/n and the sum of the squares of the residuals is
RSS =

∑n
i=1 (yi −model (xi))

2.
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Figure S58: Dependence of δχ on f for model 1m at T = 22◦C and in the limit of infinite
temperature.

For a finite sample size there exists the following correction:

AICc = AIC +
2 (k + 1) (k + 2)

n− k − 2
, (135)

which is useful when we compare models with different number of parameters.
The relative probabilities of the two models with values of the information criterion given by

AIC1 and AIC2 respectively can be estimated as

exp

(
AIC1 −AIC2

2

)
(136)

So, if AIC1 − AIC2 = −501.7 + 493.9 = −7.8 then model with value AIC1 is 49.4 times more
probable than the model with value AIC2.

3 δχHB (f) dependences for a block copolymer with polyacry-
lamide in random mixing approximation

Let us do calculations of δχHB for a diblock copolymer with a polyacrylamide block based on
our models of hydrogen bonding association and the values of association constants deduced from
fitting IR data.

δχHB (f) = −1

2

d2fHB (f)

dφ2B
(137)

First, the dependence of δχ on f for models with one association constant is considered. The
graph for model 1m is shown in Figure S58. For other models, the plots appear qualitatively the
same, so they are not shown here. The largest absolute value of δχHB for one-constant models is
attained in the limit as f → 0 and δχ then monotonically decreases as the fraction of hydrogen-
bonding block increases. The decrease of δχ with f is intuitively expected, since, if more neutral
segments are mixed in with the network of hydrogen-bonded segments, then more hydrogen bonds
need to be broken, and more energy needs to be spent in doing so. It can also be seen that changing
the temperature leads to a decrease of the maximal value of δχ at f → 0, although this value is
still very high even at infinite temperature. It is also interesting to note that at f > 0.4 there is
no change in δχ with temperature and that δχ depends only on the volume fraction f .

In the case of models with two association constants, the behavior at small volume fractions
is qualitatively different. The dependence of δχ on the volume fraction of the hydrogen-bonding
block calculated for model 6s at different temperatures is shown in Figure S59. As the temperature
is increased, a peak at a finite value of f appears, which moves to the right as the temperature
grows further. However, the behavior of δχ at f > 0.4 is similar to the one-parameter models:
there is a gradual decrease of δχ as the volume fraction of the hydrogen bonding block is increased
and little difference between the curves calculated for different temperatures. It is also interesting
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Figure S59: Dependence of δχ on f for model 6s at different temperatures.
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Figure S60: Dependence of δχ on f for all good models at T = 100◦C.

to note that the values of δχ for all good two-parameter models are close to each other not only
qualitatively, but also quantitatively (see Figure S60).

It can be seen that our current predictions for δχ of polyacrylamide are unrealistically high.
This is especially true for small values of f . However, these small values of f are in fact never
reached in polymer systems due to the non-randomness of mixing that we discussed above. In
addition, it is important to re-emphasize this analysis as just an initial step on the way to the
application of the association model approach to describe hydrogen bonding interactions in block
copolymers.
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